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The Framework

Fantasy football has become a cor-
nerstone among football fans and sta-
tistical amateurs. Generally, fantasy
games involve

• roster selection at the beginning of the season;
• match-by-match challenges against other participants, with

the results determined by the collective performance of the
players on the fantasy rosters;

• a lot of free and available data, which allows for statistical
analysis.

So far, there is no statistical literature referring to fantasy football
models: we try to fill this gap, by using hierarchical Bayesian
models (Gelman and Hill, 2006) for predicting the players’ per-
formances.



Overview of the game

For player i in match t the total fantasy rating yit is given by

yit = Rit + Pit, (1)

where R is the raw subjective score on a scale from one to
ten assigned by some prominent newspaper, and P is the point
score, that takes care of specific in-game events.

Event Points

Goal +3
Assist +1
Penality saved* +3

Yellow card −0.5
Red Card −1
Goal conceded* −1
Own Goal −2
Missed penality −3

Table: Point scores. * = events only applicable to goalkeepers.



Overview of the game

We refer to the Italian fantasy
football version Fantacalcio. At
the beginning of the season,
Fantacalcio managers are allo-
cated a limited amount of vir-
tual money with which to buy the
players that will comprise their
roster.
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Main challenge There may be missing values: in fact, yit will
be missing if the player
• does not play in the match;
• does not participate in the match for long enough for being

judged by the subjective raw score.
A natural question is: how modeling the missingness?



Application: Serie A 2015-2016

Data All data are from the 2015–2016 season of the Italian
Serie A and were collected from the Italian publication La
Gazzetta dello Sport.1
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• N = 237 players,
grouped into

• J = 4 positions (18
goalkeepers, 90
defenders, 78
midfielders, and 51
forwards), and
K = 5 team clusters;

• T = 38 matches.

1http://www.gazzetta.it.

http://www.gazzetta.it


Predictors and models notation

• hit: home/away predictor. hit = 1 if player i’s team plays
match t at its home stadium and hit = 0 if the match is
played at the opponent’s stadium;

• qi: initial standardized price for player i;
• αi: individual intercepts corresponding to each player
i = 1, ..., N ;

• γk[i] and βk[i],t: intercepts for the team-cluster of player i
and the team-cluster of the team opposing player i in
match t, respectively, with k = 1, ...,K;

• ρj[i]: the position-specific intercept, with j = 1, ..., J ;
• δj[i]: coefficient for the prices;
• λj[i]ȳi,t−1: autoregressive term;
• ζj[i]ȳi,t−1: autoregressive term in the mixture model.



Mixture (MIX) model for the ratings

Assuming that it is very rare for a player to play in every match
during a season, we can try to model the overall propensity for
missingness. Let Vit denote a latent variable

Vit =

{
1, if player i participates in match t,
0, otherwise.

If πit = Pr(Vit = 1), then we can specify a mixture of a
Gaussian distribution and a point mass at 0 (Gottardo and
Raftery, 2008)

p (yit | ηit, σy) = πitNormal (yit | ηit, σy) + (1− πit) δ0, (2)

where δ0 is the Dirac mass at zero and ηit is the linear predictor:

ηit = α0 +αi+βk[i],t+γk[i] +ρj[i] + δj[i]qi+λj[i]ȳi,t−1 + θhit, (3)

and σy is the standard deviation of the error in predicting the
outcome.



Mixture (MIX) model for the ratings

The probability πit is modeled using a logit regression,

πit = logit−1
(
p0 + ζj[i]ȳi,t−1

)
, (4)

which takes into account ȳi,t−1, the average rating for player i
up to match t− 1; p0 is an intercept for the logit model. The
individual-level, position-level, and team-cluster-level
parameters are given hierarchical normal priors,

αi ∼ Normal(0, σα), i = 1, . . . , N (5)
γk ∼ Normal(0, σγ), k = 1, . . . ,K (6)
βk ∼ Normal(0, σβ), k = 1, . . . ,K (7)
ρj ∼ Normal(0σρ), j = 1, . . . , J (8)

with weakly informative prior distributions for the remaining
parameters and hyperparameters.



Models extension

Our mixture specification allows for some natural other models
extensions

• πit ∼ logit−1 → MIX
• πit = 1, fixed

• missing yit = 0→ Hierarchical autoregressive model (HAr);
• missing yit ∼ f → Hierarchical autoregressive model with

missing model (HAr-Mis);

Remark We want to estimate our models and predict the
fantasy rating on a test set. Some interesting issue arise:
missingness, model calibration, posterior predictive checks,
out-of-sample predictions...

Setup We use the first half of the season as training set and the
second half as test set.



Estimation
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MIX and HAr-Mis,
that take care of
the missingness,
produce similar re-
sult. (Models fitted
via Markov chain
Monte Carlo (3000
iter., burn-in=1000)
using RStan Stan
Development Team
(2016a) and moni-
tored convergence
as recommended in
Stan Development
Team (2016b)).

)



Posterior predictive checks
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Seasonal calibration: MIX
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Team selection

Final aim Select the best roster. According to our posterior
predictions for the second part of the season, we can create the
best roster.
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ACERBI ( 6.13 )

BONUCCI ( 6.05 )

MANOLAS ( 6.03 )

ANTONELLI L. ( 5.82 )

POGBA ( 6.97 )

NAINGGOLAN ( 6.68 )

HAMSIK ( 6.66 )

HIGUAIN ( 8.68 )

SALAH ( 8 )

BELOTTI ( 7.84 )

(a) Observed team
BI
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ALBIOL ( 6.62 )

RUDIGER ( 6.58 )

ACERBI ( 6.47 )

FELIPE ( 6.4 )

HAMSIK ( 7.51 )

KHEDIRA ( 7.22 )

POGBA ( 7.21 )

HIGUAIN ( 10.78 )

PAVOLETTI ( 9.02 )

DYBALA ( 8.86 )

(b) MIX team

Let us note that the MIX is quite competitive; moreover Rudiger
(defender, Roma) and Khedira (midfield, Juventus) performed
pretty well in the 2016-2017 Serie A season.



Discussion and further work

• We proposed a class of hierarchical Bayesian models for
predicting player ratings, in the presence of noisy fantasy
football (soccer) data;

• these fantasy ratings may be seen as a crude proxy for
players’ performances;

• we took care of the missingness issue;
• after controlling for missingness, the out-of sample

predictive fit is good (the selected team appears to be
competitive). Still checking for calibration.

• Further work
• Dynamic prediction (match after match), adding data for

more seasons, adding predictors;
• app for fantasy football managers (working on).
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